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The author considers the problem of the construction of guidance effect 
in a swtem that controls an object whose motion is described bg linear 
differential equations with time lag. The optimal control is achieved 
under conditions of asymptotic stability of the given motion and for the 
minimum time integral of the square error in the coordinates of the 
controlled quantity and the guiding action. The solution is based on 

Liapunov’s [ 1,2 1 method developed for equations with time lag [ 3 ] and 
modernized in accord with the principles of dynamic programming 14 I. It 
is shorn that the optimal reaction of the control must take place at 
every instant of time t in the form of a functional of functions de- 
scribing the behavior of the control object during the preceding time 
interval t - h G I < t (h is the lag). An explicit expression of this 
functional is given. The existence of a solution is established by the 
method of the deformation of the system f5 I. and an approximate method 
is given for the construction of the optimum control. The results 
generalize the investigations of Letov [ 6 1. to systems with time lag. 

1. Preliminary remarks. Let us consider a control system bee 

figure) in which the disturbed motion is descr&ed by the differential 
equations 

$ = $J U+jXj (i!) + i bijXj (t - h) + bit (i = 1, . . ) n) (1-l) 
j=l i=l 

50 



Analytic construction of an optiral control: 51 

where xi(t) = zi(t) - zio(t) are the deviations (disturbances) of the 
coordinates of the regulated vector quantity z(t) at the output of the 
regulated object A for the given (undisturbed) motion z"(t); e is a 
scalar quantity, the regulating action of the control B, which is formed 
on the basis of information on the discrepancy x; h is the time lag 
(h = const > 0); aij, bij, bi are constants, the parameters of the 
system. 

A characteristic feature of the system is the presence of the time lag 
(hysteresis) in the regulated object. It is known 17 1 that for the de- 
termination (with t > t,) of some disturbed motion x(t) of a system de- 
scribed by equations with time lag h > 0, it is necessary to know the 
past history of this motion. The solutions xi(t) (i = 1, . . . . n) of the 
equations with time lag are determined by the initial conditions 

Z”(to + Z) = {Xi” (GJ + Z)} (i=i,...,n; --hfr<O) 

It is for this reason that in the sequel we shall mean by initial dis- 

turbances x0(-) (for some t = t,) such initial conditions xY.1 = 
IqYt, + rll. In this article we restrict ourselves to the stationary 
case when the coefficients of the equations do not depend on time. The 
initial instant of time t,, will, therefore, not play any special role. 
We shall omit the symbol ta whenever this cannot lead to a misunder- 
standing. 

The quantities which describe the state of the system with after 
effect (hysteresis) at a given time (t = t,), and completely determine 
its behavior in the future (t > t,) are thus the segments of the tra- 
jectory ( xi(t,, + r) 1 (-h < r < 0). But in such a case it must be 
possible to formulate the control at the given instant t on the basis of 
the information on the entire curve ( xi(t + r)] for the preceding time 
interval - h < r < 0. In other words, the quantity e in the Equations 
(1.1) must be treated as a functional e(t) = f[x(t + r)l defined on the 
curves x(t+r) =Ixi(t+r)) (-h<r ~0). 

Under the conditions that s is some functional, the Equations (1.1) 
become equations of a more general nature than the ordinary equations 
with time lag. These are equations of the form 

dxi 
- = xc [z (t + r)l dt 

(i = I, . . . , n) (X,- functional) (1.2) 

Such equations were considered by various authors. Here, we call 
attention to the works of Tiklronov [S I and Myshkis [9 I. The theory of 
stability for such equations by the method of Liapunov functions was de- 
veloped in 13 1. For the element of the trajectory of Equation (1.2) 
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corresponding to the instant t, it is convenient to take, here also, the 
segment x(t + r) (see [ 3, p. 1571) of this trajectory with - h Q r G 0, 
and to study the motion of the system in the corresponding function 
space ( xi(r ) I (i = 1, . ..) n; - h < r < 0). Unless stated otherwise, we 

shall take for the space I ri(r 11 the space C-h 0 of continuous functions 
I+)1 (; = 1, ..*, n; - h < T B 0). We shall’denote the elements of 
C_h , 0 by xcf* I. The norm will be defined as 

(- h<r<,o 

2. Statement of the problem. The problem consists in the con- 
struction of the control (1x, (-1 I, which will insure stable operation 
of the system and minimize the given criterion for the quality of the 
transfer process*, As a criterion of this type we select the integral of 
the square error 

fe IX,0 (*)I =S[ i ZP @co (*It t) + E” 1&(X,0 (+I. 1, .)l]clt (2.1) 
0 i=1 

Under the chosen law for the control 5 = c[ xc (. ) 1 , the quantity 
is a functional’ of the initial disturbance xp(. 1. We will call this 

Ic 

quantity the index of completeness of the system. The set of admissible 
controls 5, from which one should select the optimal control so, is the 
set ‘! of all functionals 4[ x (. 1 I (not necessarily linear ones) defined 

on the continuous curves rC(* 7 , which are elements of the above defined 

space C_h, 0 (Section 11, and satisfy the Cauchy-Lipschitz condition 

IIE [scl (.)I - E [xc C)lil <h /ix: (*I - xc (-fii (2.2) 

‘Zhe problem is the following: for known parameters aij, 6 ij, and bi, 
and for the time lag h of the system (l.l), one is required to specify a 
law of control 5” = c”lI xc (.) 1 for which the following conditions are 

satisfied. 

1) The undisturbed motion x = 0 is asymptotically stable relative tc 

arbitrary disturbances xc0 ( + ) in view of Equations (1.1) when c = 

4”[%,(‘)1. 

* The aotion, which corresponds to the initial condition xp(.) (when 

t0 = 0) will be denoted by the symbol r(tp (* ), t) when re sdeak of a 

point ( zi( t)) , and by the symbol zC(zCo (. 1, t, .I when we speak of a 

segment of the curve i xi{’ + r)! (-h <r < 0). 
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2) For an arbitrary initial condition x:(*1, the index of the system 
(2.1), with [= to, is a minimum for the class of admissible controls E, 

i.e. 

IL0 [zcO (.)I = min 1~ [Go (*)I (E E a) (2.3) 

Note 2.1. Stability is here understood in the sense of its definition 
as found in [ 3 I, i.e. the motion x = 0 is stable (in the large) if for 
every c > 0 there exists a 8 > 0 such that 

iZt(~;(.),t)<s2 when t>O (2. 4) 
i=l 

whenever 

II~,“(.)IIS~ (2. 5) 

and, furthermore, for every x,(e) the following limit relation holds 

2.2. In place of the system (1.1) one can consider equations of a 

more general form 

where the Xi are fnnctionals defined on the curves xc(.) and satisfy the 
Caachy-Lipschitz condition in xc(.) and c; 5 is an t-dimensional vector. 
In this case one can formulate the following problem on the minimum of 
the criterion of quality, which is more general than (2.1). in the form 

dx. 
-2 = xi (xc (t> ‘)$ E) 
dt 

(2. 6) 

(2.7) 

(2.8) 

where o[ X, (I is some positive definite function of its arguments. Such 
a aore general problem is, however, difficult to solve. 

We note, however, that all the following arguments remain valid (when 

rE is given by (2.1)) in any case for equations of the form 

c? c’-. 
n n 

-2 = 
dt SL ’ x j (~1 drI;j CT) + bit 

-h j=l 
(2.9) 

where on the right-hand side we have a Stisltjes integral. We shall con- 
fine our consideration to the case (1.1) in order not to complicate the 
presentation. 

An analogous problem without time lag was considered bW Letov 16 1 
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who derived the equations for the optimal control 5” by the methods of 
dynamic programming. The question on the solvability of these equations. 
under the condition of stability of the system. was studied in [ 10 I. 1x1 

that paper there nere given conditions for the stability of a linear 
system with a single control I$. An analogous problem, for the case when 
the equations of the disturbed motion contain random parameters, was in- 
vestigated in [ 11.12 1. 

The considered problems fall into the class of problems on optimal 
control. The statement and original investigation of such problems were 
made by Fel’ dbaum [ 13 1 (see also [ 14 I, where there are given basic re- 
sults and a bibliography). The development of the mathematical theory 
for the case of ordinary equations was accomplished by Pontriagin and 
his school [15 1. Problems of optimal control in systems with time lag 
(and in more general systems with distributed parameters) were considered 
by several authors. We mention the works of Kramer I. 16 1 and Bellman and 
Kalabe [ 17 1, which are similar in‘subject matter to our work. We note 
also that some problems were treated by Butkovskii and Lerner 118 1 and 
Kharatishvili [ 19 1, but in a way different from ours. 

The aim of the present article is the description of a solution of 
the above stated problem for the system (1.1) on the basis of those con- 
siderations which led to the development of the method of Liapunov func- 
tions for systems with hysteresis. We call attention to the fact that 
the presented method of solution makes it possible to give the optimal 
control to in explicit form. 

3. General approach to the solution of the problem. ‘Ihe 

following arguments are extensions of the considerations of [lo-12 1 to 
the case of equations with time lag. Hereby, the functions of Liapunov 
are essentially replaced by corresponding functionals. 

We will formulate and prove sufficient conditions for the optimum of 

the control co. We consider the problem in its general formulation given 
in the Note 2.2. One should, however, realize that the construction of 
the functionals appearing in ‘Iheorem 3.1 is quite difficult in the 
general case. In what follows we confine ourselves to the application of 
‘Iheorem 3.1 only to the problem stated in Section 2 for the system (1.1). 

Theorem 3.1. If it is possible to give a functional v [ xc( - ) 1 which 
is positive definite, which has an arbitrarily small upper limit* which 

satisfies the condition 

l We make use here of the terminology of 13, pp. 150-1701 (in the 
metric C_h, u). 
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lim u[z,(-)I = 00 for II~~(-)ll-,m 

and is such that the derivative (du/dtlE, in view of (2.71, satisfies 

the conditions 

i$jE,+O[r(o), E”[z,(*)ll=o (zc(-)EC--h,o) 

for some functional 5” E E, and 

(3.1) 

then the next inequality holds 

J?rG(*)l = 2.J [%(-)I 

Ito = min 1~ 
EEz 

(3.3) 

(3.4) 

and, hence, the functional to 1 xc(.) 1 , satisfying the conditions (3.1) 

and (3.2),will be an optimal control. 

Note 3.1. If one considers the problem with an additional restriction 

(for example 11 <II = \/ t12 + . . . + tr2 < 1). then the minimum (3.1) must 

be determined under auxiliary restrictions. It is sufficient that the 

functional v be positive definite 0x11~ on the curves so(.) satisbing 

the Lipschitz conditions [ 3 1. 

Proof of the theorem. l’he asymptotic stability in the large of the 

solution x = 0, under the conditions of ‘lheorem 3.1, follows from the 
theorems given in [ 3 I because the functional u[ xc( -)I has a negative 

definite derivative (du/dt),o = - o[ x, 5” 1 . ‘Ibus, the condition 1 

(Section 2) is satisfied. 

Let us verify the fulfillment of condition 2. Integration of (3.1) 

from t = 0 to t = 00 (which is valid due to asymptotic stability) leads 

to 

u k,” (*)I = 7 o [z (zc’ (a), &a, E” tzc @cc,” (e), t, -)pll dt = 1~0 [a” (.)I 
0 

(3.5) 

where the subscript to of x indicates that this is the solution of the 

equations (2.7) when [ = 6”. ‘Ihe equality (3.5) establishes the Equation 

(3.3). 

Next we consider sane admissible control satisfying condition 1. In 
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consequence of 13.2) we have 

P-6) 

Integfating this inequality from t = 0 to t = Q=, we obtain 

v [xc0 (+)I <y ” [2 (xc0 (*), tk, E [xc (G’ (.), ~(s)~JJ dt = IE [zco (q)J (3.7) 
0 

from which the validity of (3.41 follows in view of (X5), This estab- 
lishes the theorem. 

4. Equations far the opt&d control fO+ The basic results 
of this article are contained in the next theorem.* 

Theorem 4.f. If the system can be stabilized** with some admissible 
control 5 E E, then there exists an optimal control e"Ix,(.)I which is 
a linear functional on the curve x,(-I = Ixg(rI I Ci = f, .*.* a; -h G 
r G 0) which has the form 

co [& (*)I = i OliXi (0) + i {i B1 (z) %(r))dr (a* = const) (4.1) 
&=I -k i=3 

‘Ibe optimal index of completeness of the system fro is a quadratic 
functional an the curves x,(*1. This functional has the form 

J<* [&(")I = i aijS(Q) 

i, j-1 

sj (0) f ( ( i Sij tt) Q to) sj t%)} & + 

-h i,j=l 

. 

** 

We rastrfct ourselves to the case when the matrix If &ijft ln in EqltS- 

tions (1.1) is nansingular. In case the matrix is singular, the arm- 

Rents are carried through in the same ray, im?ept that in the de- 

finition of the positive definiteness one has to introduce certain 

changes (see b8low, Rote 6.1. Section St* 

In other words, if one can gfve a contro1 4: E E for which the salu- 

tion x = 0 of the system (1.1) is asymptotically stable and the in- 
t;sersl Ig converges. 
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Note 4.1. Under the hypotheses of the theorem, It is assumed that it 
IS possible to stabilize the system by means of at least one admissible 
control 5. The answer to the question on this possibility is a separate 
problem. We note that the process of the construction of a solution de- 
scribed below, in Section 6, leads also to the solution of the problem 
on the possibility of stabilization (see Section 6). One can also give, 
in closed form, certain sufficient conditions for the posslbility of 
stabilization. This problem will be treated in a separate paper. Here we 
only note that the stabilization is certainly possible if the system 
(1.1) is asymptotically stable when 5 = 0, or if the time lag h is 
sufficiently small (or if the numbers b ij are small), and if for the 
system 

dxi/ dt = Z a{jxj + big 

the stabilization conditions given in the article [lo 1 are satisffed. 

The conditions are as follows. It is necessary and sufficient that 
the root space of the matrix A = 11 a - . 11 In, corresponding to the roots h 
with nonnegative real parts, lies in”the space formed by the vectors b, 
Ab, . . . . A-lb. 

‘Ihe proof of the theorem will be indicated in Section 6. Assuming 

that the theorem is true, we derive now the equations which are satisfied 

by the quantities a. ., Bij and yij 

‘i 

which determine the optimal index of 

the system IEo and t e optimal control 6”. 

These equations are obtained by substituting u from (4.2) and the 

quantity 0 = xl2 + . . . + z,,* + [* into the conditions (3.1) and (3.2). 

Let us first construct the expression for the derivative (du/dt)$. For 

the computation of this derivative one must, in accordance with the 

general rule (13, pp.170-179 1 I,, substitute in (4.2) for x(r) and x(e) 

the running segment of the trajectory x( t + r) and x( t + 6) and differ- 

entiate with respect to t. ‘Ihe change of the functions n(t + I) and 

x(t + 6) is a shift to the right. One can assume that these functions 

are differentiable with respect to t, r and 6 (see [ 3, pp.158,1621 1. 

The indicated differentiation reduces to the transformation of the 

functions r(t + f), r(t +6) by means of an operator (13, pp. 160-166 I). 

x,‘(t + T) (--h<T<O) 

y (t + z) = Xl’ (t + q = 
1 n 
( jz %jzj (‘I+ $I bijxj (t- h) + bi& (T = 0) 

(4.3) 
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i $jzj tt) + $J bij2j(t - h, + b{E (6 = 0) 

j=l j=l 

Taking this into consideration, and transforming the expression ob- 
tained from the differentiation of the functional (4.2) through inte- 
gration by parts,* we obtain the next equation which gives the deriva- 
tive (when t = 0): 

(g>, = 2 (aijajk 4 akjajd. zi (0) xk (0) + 

i. j-k 

+ 2 (aijbjkxt (0) xk (- h) + qjbiksj (0) Xk (- h)) 4 

i. j.k 

+ 2 (aijbjq (0) + Ufjbzj (0)) E + x [aiksk (0) + 

i.j i. j. k 

+ bikxk ( - h)l 5 Bij (z) zj (r) Ch + 2 Ebi 5 Bij (z) xj (7) CJz + 

-h i, j -h 

+ 2 gij (0) 4 to) Sj (0) - z Btj (- h) % (0) Xj (- h, - 
i, j . . 

(4.4) 

& (0) sj (6) - yij i- h, 6) g (AZ) xj (S)]} d@ - 

We add x1* + . . . + xa2 + r2 to the right hand side and equate the ob- 
tained sum to zero. In view of (3.11, we thus obtain the first equation 
for the quantities v and co. The second equation is obtained by differ- 
entiating the first one with respect to 6, because the left hand side 
of this equation will have a minimum, when ( = to, in view of (3.2). 

Solving this second equation for to, we obtain 

* The validity of this operation follow from the fact that the funo- 

tiOUS Bii(r ) 8nd r ii (r , 6) are sufficiently smooth (see Section 8). 
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(4.5) 

Thus, the problem reduces to the determination of functionals v and 
to satisfying the conditions (4.5) and 

(4.6) 

where (dv/dtJc has the form (4.4). 

Substituting (4.4) and (4.5) into the Equation (4.61, and equating 
the coefficients of xi(~) and z .(r ) to zero, we obtain the system of 
equations for the functions 8.. r 
‘lhe resulting equations are $!te camp icated, but it is possible to 

i 1, yii(v, B), and for the constants cij. 

obtain their approximate numerical solutions. One can, for example, 
solve these equations by expanding the functions Bij(f ) and Y i .(r , Q) 
into Fourier series. ‘Ihis approach is especially convenient an d justified, 
because it is sufficient to approximate the functions /3,,, and y i j 
(which determine the optimal control co (4.5)) in the mean in order to 
find an approximate optimal system. ‘fhe technical difficulty of the solu- 
tion of the equations for a. ., @. . and y . . is also due to the fact that 
one has the find those soluXons or whit the functional (3.2) is posi- ‘f ‘k 
tive definite. The difficulty is circumvented by the approximate method 
of solution described in Section 6, where the problem is reduced to the 
successive solution of a system of’linear equations. Hereby one obtains 
asymptotically those solutions for which the requirements of positive 
definiteness of the functional (4.2) is satisfied. 

It thus follows that an optimal control to, in a system with time lag 
(1.1) under the conditions that the quantity (2.1) be a minimum, is an 
ideal control t 20, p. 3601 which feeds into the input of the regulated 
object A at any instant t the quantity co I x( t, - ) 1 (4.1) that is pro- 
duced on the basis of the measurements of the discrepancy in x at the 
given instant of time, and during the preceding instants t - h < r < t. 

The results of the ~asur~nts of the preceding values of the discre- 
pancies are hereby transformed in the integrating links that compute the 
integrals 

It is interesting to note that for the system (1.1) with a-discrete 
time lag h, the optimum control 4‘” is transformed into a form which con- 
tains integrals that account for the continuous effect of the hysteresis 
during the entire interval of the time lag. 
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5. Auxiliary material from the theory of Liapunov's second 
method. In this section we present some information of an auxiliary 
nature. These results are used below in Section 6 for the construction 
of the functional u (4.2) which solves the optimization problem. 

Let us consider the linear equation with hysteresis 

2 = iJcijXj (l) + i bi]Xj (t - h) + 5 idij (T) Xj (T) dT 
j=l j,l 

(5.1) 
-hj-1 

( cij = const, bij = const) 

where the d. .(r ) are differentiable functions of the variable 7. 'Ihe 

matrix llbiiif ln is assumed to be nonsingular (see footnote in Section 4). 

Let us consider the problem on the construction of the functional V 
for the Equation (5.1). Ibis functional plays the role of a Liapunov 
function and has a given derivative dV/dt in view of the equations (5.1). 

For ordinary linear differential equations it is most convenient to 
use Liapunov functions that are quadratic forms. It is natural that for 
the equations with hysteresis (5.1) quadratic functionals V[ nC (* ) I must 

play a similar role. 

In this article we restrict ourseves to the case when the derivative 
dV)dt has (for t = 0) the form 

f = i OijXi (0) Xj (0) + 5 { 5 Yij (T) Xi (0) Xj (T)]dt + 

i. j=l -h i, j=l 

+ i hijxi (0) sj (--h) + 1 { i; Cpij (z) 9 (--h) Xj (T)lclT + (5.2) 
i, j=l __h i.j=l 

-h-h i,j=l 

dzd6 = F I’, (.)1 ((Yijt ‘pij; Eij) ~ ‘1) 

‘lhe theory can, however, be developed without difficulty also for 
more general cases, when F[ xc (. )1 is a quadratic functional of zC(.) of 

a more general nature,* and also for the case when the right-hand sides 

* The author considers it to be his duty to note that, independently of 
him, the theory of the construction of the functionals v that have a 

quadratic derivative. for linear equations with time lag. ras devel- 

oped recently by 1u.M. Repin. The results of Repin have been pre- 
sented in a report *On soue functionals for equations with time lag” 

at the 4th All-Union Yatheuatical Congress (Program of the Congress.P.751. 
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of the Equations (5.2) depend on time t. ‘Ihe needed material for such a 

development in analogy with the known theory with ordinary differential 

equations, can be found, for example, in [ 3 1 . 

The following theorem is valid. 

Theorem 5.1. Suppose that the solutions of the Equations (5.1) are 

asymptotically stable, i.e. the roots of the equations 

detIIJkl - dklhII = 0 
0 

’ Jkl = ckl + bkle-Ah + s dkl (z) ehT dz 
for k+l 

-h 
8il = 1 for k = I 

have negative real parts [ 3, p. 1641 . ‘Ihen for every functional of the 

form (5.2) there exists one quadratic functional V which has the form 

i, j=l 

%jrt(0)Xj(O) + i [ [ {Bij tz) “j tT) xi (O)l dT] + 

I, j=l -h 

0 0 

+ \ \ { i yij (79 0) Xi lT) Xj (6)} d?de 
-h-h i, j=l 

(Pij* Yij - are piece-wise smooth functions) (5.4) 

whose derivative satisfies the Equation (5.2) in view of the Equations 

(5.1). 

Proof. In [ 3 I it is shown that a functional V[ xc (. ) 1 , which has a 

derivative dV/dt and satisfies the condition (5.2), is of the form 

(5.5). 

For the proof of the theorem it is, therefore, sufficiefit to show that 

the functional (5.5) actually has the form (5.4). ‘lhe verification of 

this can be accomplished by starting out with general theorems of fuuc- 

tional analysis, or directly with the construction of the functional 

first on piece-wise constant initial functions xi(t) and then going over 

to continuous functions x.(r). This will not lead to any great diffi- 

culties because the solutions ( xi(- ), t ] , where x(. ) is a function of 

the form 

Zi (T) = 0 (i=l,...,. n; i#j, --hQT\<O) 

Xj (7) = 0 (-h<T<<rl, Ta<r<O), Zj (7) = 5 (Q< c<d 

or 
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are continuously differentiable in r 1, r2 and 4. 

‘lhe verification of the smoothness of the fuuctions Bij and y . . thus 
constructed, can he carried out on the basis of the property of t ‘I: e in- 
tegrability and differentiability of the solutions (5.1) with respect to 
the initial curves. We omit the technical details. 

Note 5.1. One can show that ou the initial curves X,(S) that satisfy 
the Cauchj-Lipschitz conditions 

I~*~~l~--zi~~~~i1~l~78-~1f for ll~c,(*)l~~ 

I =i &l) --zi~~~~ld~Il~~e(~~lli~~---rlI for Ilz,f-)il>f 

(L = const, i = 1, . . .( n) 

the iunctional Y is positive definite if the fuuctioual F is neestive 
definite oa these curves. * This is sufficient for what follows, because, 
ia view of the stateueut6 asde in 13, 0. 1581, we cfm restrict OUrSelVeS 

to such curvea. 

6. Gmstrnction of the optimal control to by deforming the 
system. In this section we describe the process of the construction of 
the optimal control 159 snd of the functional u by the method of the de- 
formation of the system through the introduction of a parsmeter p. The 
arguments given here are similar to those found in IiO-12 1 for analo- 
gous cases. 

Let us consider an auxiliary problem. Suppose we are to find the 

optimal vector control 

which minimizes the quantity 

l Under the condition that the aatrir I/ bii 11 ]. a is nonsingular. One cau 
free himself of this restriction by introducing in a special w&v a 
variation of the concept of positive defiaiteoess. namelf, by reouir- 
fng positive defluiteness of u with respect to 11 x (0) I\ only on the 
curves 



An8lytic con8traction of an optimal control (1% 

in a control system described by the equations 

E&,[i QjZj (t) + i bijzj (t -h) + b&l] + (1 -IQ Et 

j=l j=l 

(i=I,...,n) (6.2) 

Whenp= 0, the problem can be solved by elementary means. Indead, 
when p = 0 the system has no time lag and the functional v reduces 
simply to the function 

D (n, . . .) zn) = v [z, ( l ), p = 01. 

For such a function* we derive, with the aid of (3.1) and (3.21, the 
equations 

~,$Si+~x*~+bo, 281 +g = 0 (i-i,...,4 
i i=l i-1 

lhese equations are satisfied by 
n 

v = 2 cQ#g 
( 

at* = & 
1 

i=l 

“Ike optimal control has the form 

El be (*)I = - a (0) (i = 1, l * a, nf 

P- 
Ccl 

Let us assume now that the problem has been solved for some value of 
‘Ihis means that we have found functionals V[X, (a), pl and si[xc(*)’ 
which have the foxm 

-h-h i.j 

l One inconvenience that arises here is the faet that w(q, .,., 2;) 
is positive IndefInite in { se(*)), but this is not important at thid 

point (see the preaeding footnote). 
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Et I% (-)V PI = - {xaij (P) 
j 

xj to) + + i {x Bij (TV p) Xj (+)}dT} 
(i=2,...,n) -h j 

and satisfy the Equations (3.1) and (3.2), i.e. have found a func- 

tional u satisfying the equations 

C (aij (PI ajk + akj (P) %d P9 (0) % (0) i- 
i.j.k 

+ 2 2 paij (p) bjk% (0) Sk (--h) Jr 2 Iaikxk (0) + biksk (e-h) 1 p X 
4.j.k i,j.k 

0 

X 1 Bij (~9 PL) sj (@ dr - { 2 [W (~1 hP + atj (1 -PI 1 5~ (0) + (6.5) 
-h i.i 

+ yij (r, 6, p) 9’ (z) x (@)I} dzd8 + 2 xi2 (0) = 0 
, 

Let us consider the question on how the function& WI xc (. 1, p 1 and 

ti[ xc (a 1, pf change with a change of the parameter (0 =G p < 1). For 

this purpose we differentiate formally the Equations (6.5) with respect 

to p. After some simple transformations we obtain 

- 2 x aij (IL) bjkxi (0) ?k (- h) - 

c [aikxk (0) + bikxk (- h)l \ Bij (z, P) Xj (7) Uh (6.6) 

i.j.k -h 

Here V = &I,&, and the symbol (~/~t) denotes the derivative of the 

functional V in view of the Equation (6.2) for the chosen value ~1, and 

for the values ci equal to the functionals (6.4) that define the optimal 

control for the given CL. at because of Theorem 5.1, the functional I’, 
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satisfying the conditions (6.61, exists and hss the form (5.4) (because 
for the given g the system (6.2) is asymptotically stable) aad, hence, 
the performance of the differentiation was valid. Fmm the expressim of 
&/ac( we find also de/dp by means of the Formlss (6.41. &kisg use of 
the fact that the derivative du/dg exists, oue csu show that the soln- 
tion of the problem found for p = 0 can be extended over tlae entire in- 
terval 0 < p =C 1 (if the system can be stabilized for p = 1) aud ane 
thus obtains the solution of the p&lea ubeu g = 1, which coincides 
with the problem originally set. '&is establishes the 'lheom 4.1. Since 
the argrmnents here are the same as those in [ll I, they will be omitted. 

In conclusion, we note that the method described shove slums the pro- 
cedure for solving the problem approtitely: we solve the problem rhen 

P 0, and then find the incrmeuts of tbe fvmctiauv AU[Z (.I, pl ad 
A;.[z (.) ~1 that correspond to the increases Ap, by tbeCuse of the 
E$Li& (6.6) and by setting Au = Apdv/dp, Ati P At d&&t. lhe 
Equations (6.6) that determine du/dg tmst be solved approximately here 
also. If the quantity AC + 0, and the solutions of the Eqaatiaas (6.6) 
are found with a sufficient degree of accuracy (at least in the mesa), 
then the approximate solution [Ai will converge to the exact solutiap. 
We note also that in the case when the system cammt he stabilizedwith 
p = 1, then the functions1 u[x,(.), pl will be mbomdalopsae initial 
curve as p + 1. lhis means that one of the coefficients a--(p), or am 
of the functions Bij(r, ~1 or yij(f, 6, ~1 Beck infinite y large. 'i 

The author states that the present work bad its origin in the investi- 
gations of Letov, and extends his gratitude to him for spprsising this 
article, and for valuable suggestions. 
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