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The author considers the problem of the construction of guidance effect
in a system that controls an object whose motion is described by linear
differential equations with time lag. The optimal control is achieved
under conditions of asymptotic stability of the given motion and for the
minimum time integral of the square error in the coordinates of the
controlled quantity and the guiding action. The solution is based on
Liapunov’s [ 1,2 ] method developed for equations with time lag [3 ] and
modernized in accord with the principles of dynamic programming [4]. It
is shown that the optimal reaction of the control must take place at
every instant of time t in the form of a functional of functions de-
scribing the behavior of the control object during the preceding time
interval t — h<r < t (h is the lag). An explicit expression of this
functional is given. The existence of a solution is established by the
method of the deformation of the system [5 ], and an approximate method
is given for the construction of the optimum control. The results
generalize the investigations of Letov [6 ] to systems with time lag.
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1. Preliminary remarks. Let us consider a control system (see
figure) in which the disturbed motion is described by the differential
equations
dz. n n
=2 aiwy () + Dbuz ¢ — B + b @=1,...,m  (1.1)
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where x.(t) = z,(t) - z°(t) are the deviations (disturbances) of the
coordinates of the regulated vector quantity z(t) at the output of the
regulated object A for the given (undisturbed) motion z°(t); ¢ is a
scalar quantity, the regulating action of the control B, which is formed
on the basis of information on the discrepancy x; h is the time lag

(h = const > 0); @i bij' bi are constants, the parameters of the
system.

A characteristic feature of the system is the presence of the time lag
(hysteresis) in the regulated object. It is known [7 ] that for the de-
termination (with ¢ > to) of some disturbed motion x(t) of a system de-
scribed by equations with time lag h > 0, it is necessary to know the
past history of this motion. The solutions x;(t) (i =1, ..., n) of the
equations with time lag are determined by the initial conditions

(e + 1) ={@’ o+ v} (=1,....,n, —k<T<0)

It is for this reason that in the sequel we shall mean by initial dis-
turbances z°(:) (for some t = t,) such initial conditions x°(:) =
{x2(t, + 7r)}. In this article we restrict ourselves to the stationary
case when the coefficients of the equations do not depend on time. The
initial instant of time t; will, therefore, not play any special role.

We shall omit the symbol t, whenever this cannot lead to a misunder-
standing.

The quantities which describe the state of the system with after
effect (hysteresis) at a given time (¢t = t;), and completely determine
its behavior in the future (¢t > t;) are thus the segments of the tra-
jectory { x;(ty +r)} (-h <7 < 0). But in such a case it must be
possible to formulate the control at the given instant t on the basis of
the information on the entire curve { x;(t + r) ] for the preceding time
interval — h<r < 0. In other words, the quantity ¢ in the Equations
(1.1) must be treated as a functional £(t) = £[x(t + r) ] defined on the
curves x(t + r) ={z;(t +r)} (-h<r <0).

Under the conditions that £ is some functional, the Equations (1.1)
become equations of a more general nature than the ordinary equations
with time lag. These are equations of the form

dz;
-;—‘ =Xz (@ + 7)) (i=1,...,n) (X;— functional) (1.2)

Such equations were considered by various authors. Here, we call
attention to the works of Tikhonov [8 ] and Myshkis [9 ]. The theory of
stability for such equations by the method of Liapunov functions was de-
veloped in [3 1. For the element of the trajectory of Equation (1.2)
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corresponding to the instant £, it is convenient to take, here also, the
segment x(t + r) (see [3, p. 157]) of this trajectory with - A <r < 0,
and to study the motion of the system in the corresponding function
space {x,(r})} (i =1, ..., n; - h<r < 0). Unless stated otherwise, we
shall take for the space { x;(r)} the space C_, , of continuous functions
fz ) (i=1, ..., 0y - h<r <0). We shall denote the elements of
Cho by x_(.). The norm will be defined as

lae()l=sup[ N et@]" —hses<

i=1

2. Statement of the problem. The problem consists in the con-
struction of the control &1 x, (-}1, which will insure stable operation
of the system and minimize the given criterion for the quality of the
transfer process*. As a criterion of this type we select the integral of
the square error

oo

Ielz (N = ([ 3 a2 @ () ) + 8 Lo @ ()1, )] 2)
i=y

0

Under the chosen law for the control { = £l x_(.)1], the quantity I,
is a functional' of the initial disturbance x °(-). We will call this
quantity the index of completeness of the system. The set of admissible
controls &, from which one should select the optimal control £°, is the
set 2 of all functionals é[x_(.)] (not necessarily linear ones) defined
on the continuous curves xc(-S, which are elements of the above defined
space C_j (Section 1), and satisfy the Cauchy-Lipschitz condition

18 [z () — & [ze (VN <Lz e () — 2 ()] (2.2)

The problem is the following: for known parameters ayjr bij* and b,
and for the time lag h of the system (1.1), one is required to specify a
law of control £°= £°[x_(.)] for which the following conditions are

satisfied.

1) The undisturbed motion x = 0 is asymptotically stable relative tc
arbitrary disturbances x °(.) in view of Equations (1.1) when & =

£ol= (1) 1.

* The motion, which corresponds to the initial condition xc"(.) (when
t, = 0) will be denoted by the symbol x(z°(-), t) when we speak of a
point { z ()}, and by the symbol x (z°(-), t, .) when we speak of a
segment of the curve | 2 (t+ Nl (~h<r <0y,
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2) For an arbitrary initial condition x2°(-), the index of the system
(2.1), with & = £°, is a minimum for the class of admissible controls =,
1.e,

Iee [2° (1)] = min Iz [z° (+)] X)) (2.3)

Note 2.1. Stability is here understood in the sense of its definition
as found in [3 ], i.e. the motion x = 0 is stable (in the large) if for
every ¢ > 0 there exists a & > 0 such that

n
Dz2@s () )<e  when :>0 @ 4)
i=]1
whenever
EMOIRS: (2-5)

and, furthermore, for every xc(-) the following limit relation holds
n
lim[ Y2 @ ()0 | =0 for 1o 2.6)
i=1

2.2. In place of the system (1.1) onme can consider equations of a
more general form

dz,
Q—[;‘Xi(”c (t,-), &) 2.7

where the Xi are functionals defined on the curves xc(-) and satisfy the
Cauchy-Lipschitz condition in xc(-) and £; € is an r-dimensional vector.
In this case one can formulate the following problem on the minimum of
the criterion of quality, which is more gemeral than (2.1), in the form
[e 0]
Tz ()] = | o (o (1.8 [z, @), .- )] de 2.8)
0
where ol z,gl is some positive definite function of its arguments. Such
a more general problem is, however, difficult to solve.

We note, however, that all the following arguments remain valid (when
If is given by (2.1)) in any case for equations of the form
t!t'l- 0 7:
7=\ D mdn; @+ b (2.9)
—h j=1
where on the right-hand side we have a Stieltjes integral. We shall com-
fine our consideration to the case (1.1) in order not to complicate the
presentation.

An analogous problem without time lag was considered by Letov [el
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who derived the equations for the optimal conmtrol §° by the methods of
dynamic programming. The question on the solvability of these equations,
under the condition of stability of the system, was studied in [10]. In
that paper there were given conditions for the stability of a linear
system with a single control £. An analogous problem, for the case when
the equations of the disturbed motion contain random parameters, was in-
vestigated in [11,12 ].

The considered problems fall into the class of problems on optimal
control. The statement and original investigation of such problems were
made by Fel’dbaum [ 13 ] (see also [ 14 ], where there are given basic re-
sults and a bibliography). The development of the mathematical theory
for the case of ordinmary equations was accomplished by Pontriagin and
his school [15 ]. Problems of optimal control in systems with time lag
(and in more general systems with distributed parameters) were considered
by several authors. We mention the works of Kramer [ 16 ] and Bellman and
Kalabe [ 17 ], which are similar in subject matter to our work. We note
also that some problems were treated by Butkovskii and Lerner [ 18 ] and
Kharatishvili [19 1, but in a way different from ours.

The aim of the present article is the description of a solution of
the above stated problem for the system (1.1) on the basis of those con-
siderations which led to the development of the method of Liapunov func-
tions for systems with hysteresis. We call attention to the fact that
the presented method of solution makes it possible to give the optimal
control £° in explicit form.

3. General approach to the solution of the problem. The
following arguments are extensions of the considerations of [10-12 ] to
the case of equations with time lag. Hereby, the functions of Liapunov
are essentially replaced by corresponding functionals.

We will formulate and prove sufficient conditions for the optimum of
the control £°. We consider the problem in its general formulation given
in the Note 2.2, One should, however, realize that the construction of
the functionals appearing in Theorem 3.1 is quite difficult in the
general case. In what follows we confine ourselves to the application of
Theorem 3.1 only to the problem stated in Section 2 for the system (1.1).

Theorem 3.1. If it is possible to give a functional vl xc(-)] which
is positive definite, which has an arbitrarily small upper limit* which
satisfies the condition

* We make use here of the terminology of [s, pp.150-170] (in the
metric C g o).
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lim vz, (-)] = o0 for |z, (-}

and is such that the derivative (dv/dt)f, in view of (2.7), satisfies
the conditions

(G).tolO FlOl=0 @()ela) (1)

for some functional £(° € E, and

(4 + 017e(0), &lze( ) = min (F), + 0w O), Elze(N)

di jge
(zc () ECn,0) (3.2)
then the next inequality holds
Teo (2o (1)l = v (2 (+)] (3-3)
Izo = min I, (3.4)
ECE

and, hence, the functional £° [xc(-)] , satisfying the conditions (3.1)
and (3.2),will be an optimal control.

Note 3.1. If one considers the problem with an additional restriction
(for example ||[£||=v &2+ ... + frz < 1), then the minimum (3.1) must
be determined under auxiliary restrictions. It is sufficient that the
functional v be positive definite only on the curves ’c(') satisfying
the Lipschitz conditions [3 ].

Proof of the theorem. The asymptotic stability in the large of the
solution x = 0, under the conditions of Theorem 3.1, follows from the
theorems given in [3 ] because the functional v[ x_(.)] has a negative
definite derivative (dv/dt)§o= -~ wlx, £€°]. Thus, the condition 1
(Section 2) is satisfied.

Let us verify the fulfillment of condition 2. Integration of (3.1)
from t = 0 to t = o (which is valid due to asymptotic stability) leads
to

vz’ (1)) = OSO"’ [z (2° (+)s Oz B [2e (2 (+), 8, -)eell dt = Ipo [2° (+)]
o (3.5)

where the subscript £° of x indicates that this is the solution of the
equations (2.7) when & = £°. The equality (3.5) establishes the Equation
(3.3).

Next we consider some admissible control satisfying condition 1. In
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consequence of (3.2) we have

I

(&), >— 0w sz (3.6)

Integrating this inequality from t = 0 to t = o, we obtain
oo

v [z’ ()] < S olz (rcc (OR l))g,g [z (%o () i)l dt = I [z° ()] (3.7)

0

from which the validity of (3.4) follows in view of (3.5). This estab-
lishes the theorem.

4. Equations for the optimal contrel £° The basic results
of this article are contained in the next theorem.*

Theorem 4.1. If the system can be stabilized** with some admissible
control ¢ & E, then there exists an optimal control f°[xc(-)] which is
a linear functional on the curve x (-) ={z,(r)} (i=1, ..., n; -h <
r < 0) which has the form

£ lr (N = San @+ {NB 0 a @t gmoom @)

—h i=}

The optimal index of completeness of the system Iro is a quadratic
functional on the curves x_(-). This functional has the form

e ()] = 3 @ 20+ § { 3 By () 2 0 2 ) s+

i, jus=y ~h i, j=1
4 @ n
+. S { i (1, 8) @ (1) 3 {@}}mfa = v [z, ()] (4.2)
—h—h i,j=1

(ot;; = const, 1,5 (v, ) =1, 1)

* We restrict ourselves to the case when the matrix [| bijiiln in Equa-
tions (1.1} is nonsingular. In case the matrix is singular, the argu-
pents are carried through in the same way, except that in the de-
finition of the positive defipiteness one has to introduce certain
changes (ses below, Note 5.1, Section 5).

** In other words, if one can give a control £ & & for which the solu-
tion x = 0 of the system (1.1) is asymptotically stable and the in-
tegral Ig converges.
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Note 4.1. Under the hypotheses of the theorem it is assumed that it
is possible to stabilize the system by means of at least one admissible
control f. The answer to the question on this possibility is a separate
problem. We note that the process of the construction of a solution de-
scribed below, in Section 6, leads also to the solution of the problenm
on the possibility of stabilization (see Section 6). One can also give,
in closed form, certain sufficient conditions for the possibility of
stabilization. This problem will be treated in a separate paper. Here we
only note that the stabilization is certainly possible if the system
(1.1) is asymptotically stable when & = 0, or if the time lag h is
sufficiently small (or if the numbers bij are small), and if for the
system

dzy/ dt = X ayjz; + bik

the stabilization comnditions given in the article [ 10 ] are satisfied.

The conditions are as follows. It is necessary and sufficient that
the root space of the matrix 4 = | “ij‘lln' corresponding to the roots A
with nonnegative real parts, lies in the space formed by the vectors b,
Ab, ..., A™1p,

The proof of the theorem will be indicated in Section 6. Assuming
that the theorem is true, we derive now the equations which are satisfied
by the quantities a;, ﬁij.and Y;; Which determine the optimal index of
the system Ipo and tﬂe optimal control £°.

These equations are obtained by substituting v from (4.2) and the
quantity o= x,2 + ... + xnz + £2 into the conditions (3.1) and (3.2).
Let us first construct the expression for the derivative (dv/dt)f. For
the computation of this derivative one must, in accordance with the
general rule ([ 3, pp.170-1791), substitute in (4.2) for x(r) and x(8§)
the running segment of the trajectory x(t + r) and x(t +®) and differ-
entiate with respect to t. The change of the functions x(t + r) and
z(t +7) is a shift to the right. One can assume that these functions
are differentiable with respect to t, r and ¢ (see [3, pp.158,162] ).
The indicated differentiation reduces to the transformation of the
functions z(t + r), x(t +©) by means of an operator ({3, pp.160-1661).

[ z/(t+7) (—h<T<0)

y(t+T)=xt'(t+T)= n "

| 2 %ii%; <‘)+;§} b;z;(t—h)+bE (v=0)
: o

=1

(4.3)
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z 1+9)  (—R<ELO0)
y(t+'0)=x"(t+ﬁ):= n "
D a0+ D) bzt —h +bE (B =0)

i=1 i=1

Taking this into consideration, and transforming the expression ob-
tained from the differentiation of the functional (4.2) through inte-
gration by parts,*® we obtain the next equation which gives the deriva-
tive (when t = 0):

(8),= 3 (oo + ausd 2 O 2 0) +

i, 4§,k
+ 2 (ai,-b,-k:t; (O) Tk ("‘ h) -+ aijbikmj (0) Tk ("" h)) +
i, i, k
+ 2aibim (0) + abiz; () §+ Y lawwk (0) +
i3 i, .k

+ b (— W1 { B () 25 () de + 280 § By () 23 (9 de +

—h —h

+ 2B (0) 2 (0) 7 (0) — HBus (— 1) 2 (0) 73 (— ) —

Q
-3 {zgi,ﬂ (v) 2; (v) 2 (0) fdr + (4.4)
~h i3
+2§ {3 0 9) 2 (O =5 (9) — vis (—hy 0) mu (—h) z; (B)1} d® —
ho4j
— § [ [ % & g, (1), (9) | av a0

)
Zh—=h i, i ¥

‘m:a

We add xlz R xaz + &% to the right hand side and equate the ob-
tained sum to zero. In view of (3.1), we thus obtain the first equation
for the quantities v and £°. The second equation is obtained by differ-
entiating the first one with respect to £, because the left hand side
of this equation will have a minimm, when £ = £° in view of (3.2).

Solving this second equation for {° we obtain

* The validity of this operation follows from the fact that the func-
tions Bij(') and r :'j(" 94) are sufficiently smooth (see Section 6).
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L]

EC = — { Zaiibjxi ()] “*“'i— S Z bfi; (v) z; (%) d‘t} (4.5)

—hi, j

Thus, the problem reduces to the determination of functionals v and
£° satisfying the conditions (4.5) and

(F)t 2O +E=0 (4.6)
i=1

where (dv/dt)f has the form (4.4).

Substituting (4.4) and (4.5) into the Equation (4.6), and equating
the coefficients of x;(8) and x;(r) to zero, we obtain the system of
equations for the functions 3ij(}), Y;i{r, ®#), and for the constants a;;
The resulting equations are quite compiicated, but it is possible to
obtain their approximate numerical solutions. One can, for example,
solve these equations by expanding the functions Bij(') and y;.(r, &)
into Fourier series. This approach is especially convenient ané justified,
because it is sufficient to approximate the functions B8, and y,.

{(which determine the optimal control £° (4.5)) in the mean in order to
find an approximate optimal system. The technical difficulty of the solu-
tion of the equations for ajs B;; and ¥, is also due to the fact that
one has the find those solutions ior which the functional (3.2) is posi-
tive definite. The difficulty is circumvented by the approximate method
of solution described in Section 6, where the problem is reduced to the
successive solution of a system of linear equations. Hereby one obtains
asymptotically those solutions for which the requirements of positive
definiteness of the functional (4.2) is satisfied.

It thus follows that an optimal control £° in a system with time lag
(1.1) under the conditions that the quantity (2.1) be a minimum, is an
ideal control [20, p. 3601 which feeds into the input of the regulated
object A at any instant t the quantity £°{x(t, .)] (4.1) that is pro-
duced on the basis of the measurements of the discrepancy in x at the
given instant of time, and during the preceding instants ¢t —~ h <r < t.
The results of the measurements of the preceding values of the discre-
pancies are hereby transformed in the integrating links that compute the

integrals
0

(i e ¢+ vyde

“h
It is interesting to note that for the system (1.1) with a discrete
time lag h, the optimum control £° is transformed into a form which con-
tains integrals that account for the continuous effect of the hysteresis
during the entire interval of the time lag.
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5. Auxiliary material from the theory of Liapunov’s second
method. 1In this section we present some information of an auxiliary
nature. These results are used below in Section 6 for the construction
of the functional v (4.2) which solves the optimization problem.

Let us consider the linear equation with hysteresis

0

m——meJn—%Zmﬂ,w—m+—Smew1Aﬂm (5.4)

J=1 —h j=1

(ci]- = const, &

= const)

where the d..(r) are differentiable functions of the variable 7. The
matrix “bij ," is assumed to be nonsingular (see footnote in Section 4).

Let us consider the problem on the construction of the functional V
for the Equation (5.1). This functional plays the role of a Liapunov
function and has a given derivative dV/dt in view of the equations (5.1).

For ordinary linear differential equations it is most convenient %o
use Liapunov functions that are quadratic forms. It is natural that for
the equations with hysteresis (5.1) quadratic functionals V[x_(-)] must
play a similar role.

In this article we restrict ourseves to the case when the derivative

dV/dt has (for t = 0) the form

% = i oi;z; (0) z; (0) + g { i vij (1) 21 (0) 2 (T)} ar+

0

i, j=1 h i, =1
+ 2 M (0) 5 —H{E%ﬂa<mm%M+(m>
i =1 2 W=
00 5
+ x x { D &, 8) @i () z; (ﬁ)}deﬁ =F Iz ()] (v 950 855) € C1)
—h —h 1i,j=1

The theory can, however, be developed without difficulty also for
more general cases, when F[x ()] is a quadratic functionmal of x (-) of
a more general nature,* and also for the case when the right-hand sides

* The author considers it to be his duty to note that, independently of
him, the theory of the construction of the functionals v that have a
quadratic derivative, for linear equations with time lag, was devel-
oped recently by Iu.M. Repin. The results of Repin have been pre-
sented in a report "On some functionals for equations with time lag"®
at the 4th All-Union Mathematical Congress (Program of the Congress,p.75).
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of the Equations (5.2) depend on time t. The needed material for such a
development in analogy with the known theory with ordinary differential
equations, can be found, for example, in [31].

The following theorem is valid.

Theorem 5.1. Suppose that the solutions of the Equations (5.1) are
asymptotically stable, i.e. the roots of the equations

det,”Jk, — 6};1%” =0

0

. '8, =0 ¢ k=1

Ju = e + bye + S dy (v) e dt " or k¥
by=1 for k=1

—h

have negative real parts [3, p. 1641 . Then for every functional of the
form (5.2) there exists one guadratic functional V which has the form

0

Vilz, ()] = 3 oiz(0)x(0) + é H {B:5 (1) z; (v) =, (0)} dT] +

i, =1 i,j=1 —h
9 0 a
-+ & S { D i (T, 8) % (1) (ﬁ)} dxd®
—h —h 1, j=1
(Bij' Yij — 8re piece-wise smooth functions) (5.4)

whose derivative satisfies the Equation (5.2) in view of the Equations

(5.1).

Proof. In[3 ] it is shown that a functional V[x_(.)], which has a
derivative dV/dt and satisfies the condition (5.2), is of the form
Vg, () = =\ F [z (2 (), , )] de (5.5).

0

For the proof of the theorem it is, therefore, sufficient to show that
the functional (5.5) actually has the form (5.4). The verification of
this can be accomplished by starting out with general theorems of func-
tional analysis, or directly with the construction of the functional
first on piece-wise constant initial functions x;(t) and then going over
to continuous functions x;(r). This will not lead to any great diffi-
culties because the solutions { x;(-), t}, where x(.) is a function of
the form

z;(t) =0 (i=1,...,n i}, —h<T<K0)
z; (1) =0 (—r<g<rv <, t<T<0), zi(v) = T (m<r<m)

or
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z; () =0 (—h<<T<O), z;(0) =

are continuously differentiable inr,, r, and ¢.

The verification of the smoothness of the functions 8;. and y;; thus
constructed, can be carried out on the basis of the property of the in-
tegrability and differentiability of the solutions (5.1} with respect to
the initial curves. We omit the technical details.

Note 5.1. One can show that on the initial curves x.(+) that satisfy
the Cauchy-Lipschitz conditions

fzy(v) —z; (W) 1< Lt —7| for |z ()<t
lzg(v) — 2 (W) | S Lz, ()| vs—vw] for [z () ]>1
(L=const, i=1,...,n)

the functional V is positive definite if the functional F is negative
definite on these curves.® This is sufficient for what follows, because,
in view of the statements made in [3, p. 1581, we can restrict ourselves
to such curves,

6. Construction of the optimal control {° by deforming the
system. In this section we describe the process of the construction of
the optimal control ¢°, and of the functional v by the method of the de-
formation of the system through the introduction of a parameter u. The
arguments given here are similar to those found in [10-12] for analo-
gous cases,

Let us consider an auxiliary problem. Suppose we are to find the
optimal vector control

g [xc (')1 P] = {gl [xc (‘)v p]v . ey gn [zc ()v PJ}

which minimizes the quantity
o0 n n

Tee(Ner=§ {Jad 0+ 3 t—w 32 [, ), 1+ [z ¢ 1), 1} d (6.0)

0 i=1 i=2

* Under the condition that the matrix || b;j Il {® is nonsingular. One can
free himself of this restriction by introducing in a specisal way a
varistion of the concept of positive definiteness, namely, by requir-
ing positive definiteness of v with respect to || x (0) || only on the

curves [EXOTESE (Y]
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in a control system described by the equations
d
St ]S a0 + 2} bias (£ — ) + bi&a] + (1 — i)
i=1
(l =1,...,n) (6.2)

When g = 0, the problem can be solved by elementary means. Indeed,
when p = 0 the system has no time lag and the functional v reduces
simply to the function

v(z1, ..., 2p) = v [z (-), p =0l
For such a function® we derive, with the aid of (3.1) and (3.2), the
equations

n

§ﬁ+2xi+2§‘-o z§i+—~_o (i=1,....n)

i=1 i=1

These equations are satisfied by

”=2°¢u$iz (au="7%-)

i=1

The optimal control has the form
Gilz. ()l =— 2 (0) (i=1,u.0n)

Let us assume now that the problem has been solved for some value of
. This means that we have found functionals vl (-), ] and £,z (*),
p] which have the form

v (2 ()1 = 3 a0 2(0) 7 ) + | {385 (w.w) 2 (0) 23 ()} e +
—h i,j

i'j

4§ {30050 500 2,0 a0 ©3)

~-h —h 1i,j

B Lz () u] = — {3 oy () bis + 0 4 — W] 55 0) +,

+ %_&h{z Bij (2 1) Bip + Bos (r, 1) (1 — )] 75 (%) }d,} (6.4)

* oOne inconvenience that arises here is the fact that v{x), o0 Z)
is positive indefinite in { uc(-)l , but this is not important at this
point (see the preceding footnote).



84 N.N. Krasovskii

Bulee (), p] = —{zaz, ®) 2 O + 5 S {z By (%, ) 2 (9)} d}
(f=2,...,n0)

and satisfy the Equations (3.1) and (3.2), i.e. have found a func-
tional v satisfying the equations

D (@55 (1) aje + o (1) az0) pas (0) 2 (0) +

{.j.k

+ 2 pay; (1) bzs (0) 2 (—h) + D [audi (0) + bui (—h)] p x

i,i.k i,k

(4]
X S Bij (v, ) z; (v) dv —{Z lai; () bip + ay; (1 —p)] 25 (0) 4+ (6.5)
~h

i,j

i1 §{Z B (v, ) bap -+ B (5 ) (1 — )] 25 (2) Jae]"

— 3 {Ses ) 2 ©) +5 g {z Bis (v 1) =3 (0} ] +
—h

f=2 j
+ g S {2?:2 (r, &, p) z:i (v) ;' (0) +
Zhh i

+ 15 (5, 8, 1) @' (8) 2 (9]} drdd + F a7 (0) = 0

Let us consider the question on how the functionals vlx,(.), ] and
&,lx_(.), p] change with a change of the parameter (0<p % 1). For
th1s purpose we differentiate formally the Equations {6.5) with respect
to p. After some simple transformations we obtain

(Z) = — 3 (s () @ + i (1) @) 7 (0) 5 (0) —
{6.2), » i3,k
— 2 ) ayj () bus (0) o (— B) —
i,k
S laway ) + buze (— W1 { By (v, 1) =3 (1) d (6.6)
i,j.k —h

Here V = viap, and the symbol (dV/dt) denotes the derivative of the
functional V in view of the Equation (6.2) for the chosen value u, and
for the values £, equal to the functionals (6.4) that define the optimal
control for the g1ven p. But because of Theorem 5.1, the functionmal V,
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satisfying the conditions (6.6), exists and has the form (5.4) (because
for the given p the system (6.2) is asymptotically stable) and, hence,
the performance of the differentiation was valid. From the expression of
dv/du we find also d€/dp by means of the Formulas (6.4). Making use of
the fact that the derivative dv/dp exists, ome can show that the solu-
tion of the problem found for g = 0 can be extended over the emtire in-
terval 0 < g < 1 (if the system can be stabilized for p = 1) and ome
thus obtains the solution of the problem when g = 1, which coincides
with the problem originally set. This establishes the Theorem 4.1. Since
the arguments here are the same as those in [11 ], they will be omitted.

In conclusion, we note that the method described above shows the pro-
cedure for solving the problem approximately: we solve the problem when
p =0, and then find the increments of the functions Av[x_(-), p] and
Afi[xc(- ), #] that correspond to the increases Ap, by the use of the
Equation (6.6) and by setting Av = Apdv/dp, Af; = Apd&;/du. The
Equations (6.6) that determine dv/du must be solved approximately here
also. If the quantity Apx -+ 0, and the solutions of the Equations (6.6)
are found with a sufficient degree of accuracy (at least in the mean),
then the approximate solution ¢ Az Will converge to the exact solutiom.
We note also that in the case when the system camnot be stabilized with
p =1, then the functional v[x_(-), ] will be mbounded on some initial
curve as pu » 1. This means that one of the coefficients a;.(n), or ome
of the functions /3‘-1-(1', p) or Yij('- #, p) become infinitely large.

The author states that the present work had its origin in the investi-
gations of Letov, and extends his gratitude to him for appraising this
article, and for valuable suggestions.
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